Traits of the Greats


What are the traits of great philosophers? Matthew Hammerton, a PhD student at Australian National University, came across a passage by Cambridge University mathematician Timothy Gowers about how genius is neither necessary nor sufficient for success as a research mathematician, asking whether philosophers thought something similar about those who produce high quality work as academic philosophers.

The passage is from Gowers’ Mathematics: A Very Short Introduction. He says:

Here is a rough and ready definition of a genius: somebody who can do easily, and at a young age, something that almost nobody else can do except after years of practice, if at all. The achievements of geniuses have a sort of magical quality about them – as if their brains work in a completely different way. Every year or two a mathematics undergraduate arrives at Cambridge who regularly manages to solve in a few minutes problems that take most people, including those who are supposed to be teaching them, several hours or more. When faced with such a person, all one can do is stand back and admire.

And yet, these extraordinary people are not always the most successful research mathematicians. If you want to solve a problem that other professional mathematicians have tried and failed to solve before you, then, of the many qualities you will need, genius as I have defined it is neither necessary nor sufficient. To illustrate with an extreme example, Andrew Wiles, who (at the age of just over 40) proved Fermat’s last theorem and thereby solved the world’s most famous unsolved mathematics problem, is undoubtedly very clever, but he is not a genius in my sense.

How, you might ask, could he possibly have done what he did without some sort of mysterious extra brainpower? The answer is that, remarkable though his achievement was, it is not so remarkable as to defy explanation. I do not know precisely what enabled him to succeed, but he would have needed great courage, determination, and patience, a wide knowledge of some very difficult work done by others, the good fortune to be in the right mathematical area at the right time, and an exceptional strategic ability.

This last quality is, ultimately, more important than freakish mental speed: the most profound contributions to mathematics are often made by tortoises rather than hares. As mathematicians develop, they learn various tricks of the trade, partly from the work of other mathematicians and partly as a result of many hours spent thinking about mathematics. What determines whether they use their expertise to solve notorious problems is, in a large measure, a matter of careful planning: attempting problems that are likely to be fruitful, knowing when to give up a line of thought (a difficult judgment to make), being able to sketch broad outlines of arguments before, just occasionally, managing to fill in the details. This demands a level of maturity which is by no means incompatible with genius but which does not always accompany it.

As we’ve discussed before, more than those in any other discipline, philosophers place a greater emphasis on brilliance, or innate, intellectual talent in their assessment of what is required for success at philosophy. Does such emphasis withstand scrutiny, or should we take a page from Gowers and give a lot of credit to other traits? Which ones? More generally, which traits make one more likely to produce high quality philosophy?

brain scan 2 colored

There are 20 comments

Your email address will not be published. Required fields are marked *

  
Please enter an e-mail address